Схемы активных фильтров

Предназначение

Сделать фильтр для сабвуфера

Фильтр или кроссовер(см.Самодельные кроссоверы для акустики и их предназначение), как его еще называют, сегодня выполняет важнейшую функцию. Дело в том, что практически все современные динамики, включая и сабвуфер, воспроизводят эффективно только определенную долю частот. К примеру, тот же басовик воспроизводить хорошо в состоянии только низкие басы.

Фильтр для автомобильного сабвуфера

За границами «родной» полосы (эффективно воспроизводимой), звуковое давления, идущее из динамика, заметно снижается и возрастает одновременно с этим уровень искажений. В таком случае говорить о каком-то качестве звука просто глупо и следовательно, чтобы решить проблему, приходится использовать в аудиосистеме несколько динамиков(см.Как выбрать динамики для автомагнитолы своими силами). Такова реалия: это происходит и в домашней акустике, и в автомобильной. Это не новость.

Типичные схемы расположения динамиков в авто и роль фильтров

Динамики в авто

Касательно автомобильной акустики хотелось бы выделить две типичные схемы построения системы звука, с которыми знакомы, наверное, все, кто много мало знаком с автозвуком.Речь идет о следующих схемах:

Наиболее популярная схема подразумевает три динамика. Это басовик (нацеленный исключительно на низы), динамик средних и низких частот (мидбасс) и отвечающий за воспроизведение ВЧ, твитер.

Фильтр низких частот сделать самому для сабвуфера

Именно для того, чтобы не нарушать это требование, предназначены электрические фильтры, в роль которых входит выделение конкретных «родных» частот и подавление «чужих».

Типы фильтров

Фильтры(см.Как сделать самому фильтр для автомагнитолы) частот различаются по типам.Принято выделять следующие варианты:

Обычные фильтры, принцип действия которых сводится к тому, чтобы у их катушек индуктивности сопротивление возрастало с ростом частоты сигнала и спадало у конденсаторов, которыми они наделены. Несложно догадаться, что в таких фильтрах эффективно пропускают НЧ катушки индуктивности, а ВЧ – конденсаторы.

Полосовой фильтр

  • Режекторный фильтр – полная противоположность полосовому. Здесь та полоса, которая ПФ пропускается без изменений, подавляется, а полосы вне этого интервала усиливаются;
  • ФИНЧ или фильтр подавления инфранизких частот стоит особняком. Принцип его действия основывается на подавлении высоких частот с низким показателем среза (10-30Гц). Предназначение этого фильтра – непосредственная защита басовика.

Нч фильтр для сабвуфера самому

Параметры

Кроме типов фильтров, принято разделять и их параметры.К примеру такой параметр, как порядок, свидетельствует о количестве катушек и конденсаторов (реактивных элементов):

  • 1-ый порядок содержит только один элемент;
  • 2-ой порядок два элемента и т.д.

Другой, не менее важный показатель – крутизна спада АЧХ, показывающая, насколько резко фильтр подавляет «чужие» сигналы.

Для сабвуфера

В принципе, любой фильтр, в том числе и этот, представляет собой сочетание нескольких элементов. Обладают компоненты эти свойством избирательно пропускать сигналы определенных частот. Принято разделять три популярные схемы этого разделителя для басовика.Они представлены ниже:

Первая схема подразумевает самый простой разделитель (изготовить который своими руками, не составит никакой сложности). Он выполнен в виде сумматора и стоит на одном транзисторе. Конечно, серьезного качества звука с таким простейшим фильтром не добиться, но из-за своей простоты, он прекрасно подходит любителям и начинающим радиоманам;

Простая схема

Две другие схемы намного сложны, чем первая. Построенные по эти схемам элементы, размещаются между местом выхода сигнала и входом усилителя басовика.

Каким бы ни был разделитель, простейшим или сложным, он должен иметь следующие технические характеристики.

Питание/напряжение 12-35 В
Частота среза 100 Гц
Потребление тока 5 мА
Усиление «родной» частотной полосы 6 дБ
Подавление «чужой» полосы 12 дБ

RС-фильтры

RС-фильтр высоких частот

Схема RC-фильтра верхних (высоких) частот и его амплитудно-частотная характеристика показаны на рис. 1.

Рис. 1 — Схема и амплитудно-частотная характеристика высокочастотного CR-фильтра.

В этой схеме входное
напряжение прикладывается и к резистору,
и к конденсатору. Выходное же напряжение
снимается с сопротивления. При уменьшении
частоты сигнала возрастает реактивное
сопротивление конденсатора, а
следовательно, и полное сопротивление
цепи. Поскольку входное напряжение
остается постоянным, то ток, протекающий
через цепь уменьшается. Таким образом,
снижается и ток через активное
сопротивление, что приводит к уменьшению
падения напряжения на нем.

Фильтр характеризуется
затуханием, выраженным в децибелах,
которое он обеспечивает на заданной
частоте. RC-фильтры
рассчитываются таким образом, чтобы на выбранной частоте среза коэффициент передачи снижался приблизительно на 3
дБ (т.е. составлял 0,707 входного значения сигнала). Частота среза фильтра по уровню — 3 дБ определяется по формуле:

RС-фильтр низких частот

Фильтр низких частот имеет аналогичную структуру,
только емкость и сопротивление там
меняются местами. Амплитудно-частотную
характеристику такого фильтра можно
представить как зеркальное отображение
АЧХ предыдущего.

    

Рис. 2 — Схема и амплитудно-частотная характеристика низкочастотного RC-фильтра.

В этой цепи входное
напряжение также прикладывается и к
резистору, и к конденсатору, но выходное
напряжение снимается с конденсатора.
При увеличении частоты сигнала реактивное
сопротивление конденсатора, а
следовательно, и полное сопротивление
уменьшаются. Однако, поскольку это
полное сопротивление состоит из
реактивного и фиксированного активного
сопротивлений, его значение уменьшается
не так быстро, как реактивное сопротивление.
Следовательно, при увеличении частоты
снижение реактивного сопротивления (относительно полного сопротивления) приводит к уменьшению выходного напряжения. Частота среза этого фильтра по уровню -3 дБ также определяется по формуле предыдущего фильтра.

Рассмотренные
выше фильтры представляют собой RC-цепи,
которые характеризуются тремя параметрами,
а именно: активным, реактивным и полным
сопротивлениями. Обеспечиваемая этими
RC-фильтрами величина затухания зависит от отношения
активного или реактивного сопротивления
к полному сопротивлению.

При расчете любого RC-фильтра можно задать номинал либо резистора, либо конденсатора и вычислить значение другого элемента фильтра на заданной частоте среза. При практических расчетах
обычно задают номинал сопротивления,
поскольку он выбирается на основании
других требований. Например, сопротивление
фильтра является его выходным или
входным полным сопротивлением.

Полосовой RC-фильтр

Соединяя фильтры
верхних и нижних частот, можно создать
полосовой RC-фильтр,
схема и амплитудно-частотная характеристика
которого приведены на рис. 3.

Рис. 3 — Схема и АЧХ полосового RC-фильтра.

На схеме рис. 2. R1 — полное входное сопротивление; R2
полное выходное сопротивление, а частоты
низкочастотного и высокочастотного
срезов определяются по формулам:

Следует отметить,
что значение верхней частоты среза
()
должно быть по крайней мере быть в 10 раз
больше нижней частоты среза (),
поскольку только в этом случае
полосно-пропускающий фильтр будет
работать достаточно эффективно.

Многозвенные RC-фильтры

Одиночный RC-фильтр
не может обеспечить достаточного
подавления сигналов вне заданного
диапазона частот, поэтому для формирования
более крутой переходной области довольно
часто используют многозвенные фильтры
(рис. 4, 5). Частота среза многозвенного
фильтра определяется по формуле ВЧ, НЧ
RC-фильтра.
Добавление каждого звена приводит к
увеличению затухания на заданной частоте
среза примерно на 6 дБ.

Рис. 4 — Многозвенный высокочастотный фильтр

Рис. 5 — Многозвенный низкочастотный фильтр

Одноэлементные фильтры высоких и низких частот

Как правило, одноэлементные фильтры высоких и низких частот применяют непосредственно в акустических системах мощных усилителей звуковой частоты, для улучшения звучания самих звуковых «колонок».

Они подключаются последовательно с динамическими головками. Во первых, они берегут как динамические головки от мощного электрического сигнала, так и усилитель от низкого сопротивления нагрузки не нагружая его лишними динамиками, на той частоте, которую эти динамики не воспроизводят. Во вторых, они делают воспроизведение приятнее на слух.

Чтобы рассчитать одноэлементный фильтр, необходимо знать реактивное сопротивление катушки динамической головки. Расчёт производится по формулам делителя напряжения, что так же справедливо для Г-образного фильтра. Чаще всего, одноэлементные фильтры подбирают «на слух». Для выделения высоких частот на «пищалке» последовательно с ней устанавливается конденсатор, а для выделения низких частот на низкочастотном динамике (или сабвуфере), последовательно с ним подключается дроссель (катушка индуктивности). Например, при мощностях порядка 20…50 Ватт, на пищалки оптимально использовать конденсатор на 5…20 мкФ, а в качестве дросселя низкочастотного динамика использовать катушку, намотанную медным эмалированным проводом, диаметром 0,3…1,0 мм на бобину от видеокассеты VHS, и содержащую 200…1000 витков. Указаны широкие пределы, потому, как подбор – дело индивидуальное.

Модели с полевыми конденсаторами

Фильтр низких частот с использованием полевых конденсаторов является довольно распространенным. Во многом это связано с его дешевизной. В данном случае параметр полосы пропускания будет находиться на уровне 5 Гц. В свою очередь, отрицательное сопротивление цепи зависит от установленных транзисторов. Если использовать одноканальные элементы, то они позволят значительно сократить образцовое напряжение.

Отклонение фактической индуктивности у фильтра зависит от чувствительности прибора. Стабилитроны в системе применяются довольно редко. Однако если параметр отрицательного сопротивления превышает 5 Ом, то их следует использовать. Дополнительно можно задуматься над применением тиристоров. Во многом данные элементы позволят справиться с дипольностью в системе. Таким образом, чувствительность прибора значительно снизится.

Фазировка динамиков

На этом сведение подходит в концу. Остается только определиться с фазировкой динамиков. Тут есть как минимум три способа: на слух, по форме АЧХ и по фазовому сдвигу на частоте раздела. Если у динамиков АЧХ и ФЧХ в меру линейная, и фильтр фазу на разделе сильно не накручивает, то при смене правильной фазы на неправильную на частоте раздела появится глубокий провал, пропустить его сложно. В таком случае стоит подгонять фазу по по ее сдвигу. Сделать это можно осциллографом подавая на горизонтальную развертку сигнал с усилителя, а на вертикальное отклонение с микрофона.

Подают на вход усилителя синус с частотой раздела и не меняя взаимного расположения микрофона и колонки переключают ВЧ и НЧ динамики. По одинаковости фигур Лиссажу делается вывод о равенстве фаз излучателей. Этот метод хорошо подходит для фильтров первого порядка. С кривизной наших динамиков этот метод себя не оправдывает, поэтому сравниваем АЧХ при разной фазировке.

Второй вариант заметно хуже. Однако и первый не предел мечтаний, но так как двигать индуктивности катушек не просто, а ковыряться дальше уже лень, то все было оставлено как есть.

АЧХ колонки с пассивным излучателем

Установка пассивного излучателя приводит к увеличению площади излучающей поверхности. Два диффузора колеблются вместе, поэтому во-первых повышается уровень в НЧ диапазоне, а во вторых и повышается КПД всей акустической системы.

Для примера рассмотрим обобщенную АЧХ акустической системы до и после вставки пассивного излучателя.

На сравнительном графике видно, что при наличии пассивного излучателя, АЧХ акустической системы значительно повышается в диапазоне от 20 до 500Гц. А это и есть низкочастотная область, т.е. те самые басы.

Как активный, так и каждый пассивный излучатель имеет свою резонансную частоту. На этой частоте его колебания максимальны.

Основную трудность для любой акустической системы обычно представляют самые низкие частоты, поэтому резонансную частоту всегда стараются понизить. Для этого диффузор пассивного динамика делают большей массы.

Частота среза

Диапазон частот, для которого фильтр не вызывает значительного ослабления, называется полосой пропускания, а диапазон частот, для которых фильтр вызывает существенное ослабление, называется полосой задерживания. Аналоговые фильтры, такие как RC фильтр нижних частот, переходят из полосы пропускания в полосу задерживания всегда постепенно. Это означает, что невозможно идентифицировать одну частоту, на которой фильтр прекращает пропускать сигналы и начинает их блокировать. Однако инженерам нужен способ, чтобы удобно и кратко охарактеризовать амплитудно-частотную характеристику фильтра, и именно здесь в игру вступает понятие частоты среза.

Когда вы посмотрите на график амплитудно-частотной характеристики RC фильтра, вы заметите, что термин «частота среза» не очень точен. Изображение спектра сигнала, «разрезанного» на две половины, одна из которых сохраняется, а другая отбрасывается, неприменимо, поскольку затухание увеличивается постепенно по мере того, как частоты перемещаются от значений ниже частоты среза к значениям выше частоты среза.

Частота среза RC фильтра нижних частот фактически является частотой, на которой амплитуда входного сигнала уменьшается на 3 дБ (это значение было выбрано, поскольку уменьшение амплитуды на 3 дБ соответствует снижению мощности на 50%). Таким образом, частоту среза также называют частотой -3 дБ, и на самом деле это название является более точным и более информативным. Термин полоса пропускания относится к ширине полосы пропускания фильтра, и в случае фильтра нижних частот полоса пропускания равна частоте -3 дБ (как показано на диаграмме ниже).


Рисунок 8 – Данная диаграмма показывает общие особенности амплитудно-частотной характеристики RC фильтра нижних частот. Ширина полосы пропускания равна частоте -3 дБ.

Как объяснялось выше, пропускающее низкие частоты поведение RC фильтра обусловлено взаимодействием между частотно-независимым импедансом резистора и частотно-зависимым импедансом конденсатора. Чтобы определить подробности амплитудно-частотной характеристики фильтра, нам нужно математически проанализировать взаимосвязь между сопротивлением (R) и емкостью (C); мы также можем манипулировать этими значениями, чтобы разработать фильтр, который соответствует точным спецификациям. Частота среза (fср) RC фильтра нижних частот рассчитывается следующим образом:

\

Давайте посмотрим на простой пример. Значения конденсаторов являются более сдерживающими, чем значения резисторов, поэтому мы начнем с распространенного значения емкости (например, 10 нФ), а затем воспользуемся формулой для определения необходимого значения сопротивления. Цель состоит в том, чтобы разработать фильтр, который будет сохранять аудиосигнал 5 кГц и подавлять шум 500 кГц. Мы попробуем частоту среза 100 кГц, а позже в этой статье мы более тщательно проанализируем влияние этого фильтра на обе частотные составляющие.

\

Таким образом, резистор 160 Ом в сочетании с конденсатором 10 нФ даст нам фильтр, который дает амплитудно-частотную характеристику, близкую к необходимой.

Питание

Как видно из схемы, питание нужно двухполярное. Для питание можно сделать простенький обратноход на UC3842 или даже автогенераторный на транзисторах, но мне было лень ибо я нашел в ящике с хламом электронный трансформатор на 25 Вт. Он выдает переменное высокочастотное напряжение 12 В, так что придётся его перемотать. Трансформатор выглядит так:

Для перемотки я даже не стал его разбирать, так как было достаточно места для намотки необходимого количества витков. А как рассчитать количество витков на уже намотанном китайцами трансформаторе, ведь мы не знаем ни точной частоты (она может плавать при изменении нагрузки), ни материала сердечника и мы не можем это измерить? Я делал так: брал двухполупериодный мост на быстрых диодах, припаивал к нему конденсатор и подключал к исходной обмотке трансформатора. Замерял напряжение и считал количество витков. Далее, зная сколько вольт на выходе необходимо получить, составлял пропорцию и посредством таких несложных математических вычислений получал примерное количество витков для намотки. Затем надо округлить до ближайшего чётного числа в большую сторону (так как нам нужно двухполярное напряжение и при нагрузке оно может немного проседать) и наматывал. Так как ток тут маленький, провод можно брать 0.3 – 0.5 мм. Мотаем двумя жилами сразу, потом фазируем обмотки: начало оной с концом другой. Схема конкретно моего преобразователя такая:

Как видно из схемы, это простой автогенератор с двумя базовыми обмотками, по очереди открывающими транзисторы, без каких либо стабилизаций и защит. А оно тут и не нужно, ведь применены линейные стабилизаторы 7812 и 7912. Это позволяет убить сразу двух зайцев: появляется стабилизация и пропадают помехи от импульсника. Дело в том, что при малых токах нагрузки, блок питания может работать на низкой частоте, и эта частота в виде помех сказывается на чистоте сигнала и на общем КНИ. Линейный стабилизатор помогает свести пульсации напряжения практически к нулю, а так как ток не большой, радиатор им нужен совсем маленький. В отличии от транзисторов блока питания. Изначально стояли какие-то маленькие в корпусе to-92.

Но даже при незначительной нагрузке они грелись так, что прикоснуться к ним было невозможно, в связи с чем я решил поставить транзисторы mje13003. Но и они грелись. Тогда я психанул и прикрутил их напрямую к корпусу – так-то точно греться не будут! Так и сделал, результат – после часа эксплуатации на низкоомную нагрузку (а это не есть нормальный режим работы предусилителя, так как входное сопротивление усилителей от 22 до 100 кОм) в том месте, где прикручены транзисторы корпус нагрелся примерно до 24*С, что вполне отлично. Вот как это выглядит:

Трансформатор в штатном черном корпусе, стабилизаторы на отдельной монтажной плате (травить нормальную на такое совесть не позволила), выпрямитель навесным монтажом, так как при пайке стабилизаторов тупо забыл про него. На этом фото транзисторы ещё не выведены на корпус, так как проблему лютого нагрева я обнаружил после того, как сделал фото. Кстати, покопавшись в файлах плат, которые я рисовал, я нашел копию платы электронного трансформатора, используемого в данном проекте. Нарисовал её ещё летом, когда нечего было делать. Если кому-то нужна будет, она в архиве проекта.

Уравнение разности через дискретную временную выборку

Уравнение с дискретной разностью легко получить путем дискретизации приведенной выше ступенчатой ​​входной характеристики через регулярные интервалы, где и — время между выборками. Взяв разницу между двумя последовательными выборками, мы имеем
пТ{\ displaystyle nT}пзнак равно,1,…{\ Displaystyle п = 0,1, …}Т{\ displaystyle T}

vотыт(пТ)-vотыт((п-1)Т)знак равноVя(1-е-ωпТ)-Vя(1-е-ω((п-1)Т)){\ Displaystyle v _ {\ rm {out}} (nT) -v _ {\ rm {out}} ((n-1) T) = V_ {i} (1-e ^ {- \ omega _ {0} nT }) — V_ {i} (1-e ^ {- \ omega _ {0} ((n-1) T)})}

Решая, мы получаем
vотыт(пТ){\ Displaystyle v _ {\ rm {out}} (нТ)}

vотыт(пТ)знак равноβvотыт((п-1)Т)+(1-β)Vя{\ Displaystyle v _ {\ rm {out}} (nT) = \ beta v _ {\ rm {out}} ((n-1) T) + (1- \ beta) V_ {i}}

Где βзнак равное-ωТ{\ displaystyle \ beta = e ^ {- \ omega _ {0} T}}

Используя обозначения и , и подставляя наше выборочное значение , мы получаем разностное уравнение
Vпзнак равноvотыт(пТ){\ Displaystyle V_ {п} = v _ {\ rm {out}} (нТ)}vпзнак равноvяп(пТ){\ Displaystyle v_ {п} = v _ {\ rm {in}} (нТ)}vпзнак равноVя{\ displaystyle v_ {n} = V_ {i}}

Vпзнак равноβVп-1+(1-β)vп{\ Displaystyle V_ {п} = \ бета V_ {п-1} + (1- \ бета) v_ {п}}

Анализ ошибок

Сравнивая восстановленный выходной сигнал из разностного уравнения, с входной ступенчатой ​​характеристикой , мы обнаруживаем, что существует точная реконструкция (ошибка 0%). Это восстановленный выход для неизменяемого во времени входа. Однако, если вход зависит от времени , например , эта модель аппроксимирует входной сигнал как серию ступенчатых функций с длительностью, вызывающей ошибку в восстановленном выходном сигнале. Ошибка, вызванная изменяющимися во времени входными данными, трудно определить количественно, но она уменьшается по мере увеличения .
Vпзнак равноβVп-1+(1-β)vп{\ Displaystyle V_ {п} = \ бета V_ {п-1} + (1- \ бета) v_ {п}}vвне(т)знак равноVя(1-е-ωт){\ displaystyle v _ {\ text {out}} (t) = V_ {i} (1-e ^ {- \ omega _ {0} t})}vв(т)знак равноVягрех⁡(ωт){\ displaystyle v _ {\ text {in}} (t) = V_ {i} \ sin (\ omega t)}Т{\ displaystyle T}Т→{\ displaystyle T \ rightarrow 0}

Разбор фильтра с Алиэкспресс

Для того, чтобы вы уловили предыдущую мысль, мы разберем простой пример от наших узкоглазых братьев. На Алиэкпрессе продаются различные фильтры для сабвуфера. Рассмотрим один из них.

Как вы заметили, на нем написаны характеристики фильтра: данный тип фильтра рассчитан на сабвуфер мощностью 300 Ватт, наклон его характеристики 12 дБ/октаву. Если соединять к выходу фильтра саб с сопротивлением катушки в 4 Ома, то частота среза составит 150 Гц. Если же сопротивление катушки саба 8 Ом, то частота среза составит 300 Гц.

Для полных чайников продавец даже привел схему в описании товара. Выглядит она вот так:

Далее мы собираем эту схему в Proteus. Так как при параллельном соединении конденсаторов номиналы суммируются, я сразу заменил 4 конденсатора одним.

Чаще всего можно увидеть прямо на динамиках значение сопротивления катушки на постоянном токе: 2 Ω, 4 Ω, 8 Ω. Реже 16 Ω. Значок Ω после цифр обозначает Омы. Также не забывайте, что катушка в динамике обладает индуктивностью.

Как ведет себя катушка индуктивности на разных частотах?

Как вы видите, на постоянном токе катушка динамика обладает активным сопротивлением, так как она намотана из медного провода. На низких частотах в дело вступает реактивное сопротивление катушки, которое вычисляется по формуле:

где

ХL — сопротивление катушки, Ом

П — постоянная и равна приблизительно 3,14

F — частота, Гц

L — индуктивность, Гн

Так как сабвуфер предназначен именно для низких частот, значит, последовательно с активным сопротивлением самой катушки добавляется реактивное сопротивление этой же самой катушки. Но в нашем опыте мы это учитывать не будем, так как не знаем индуктивность нашего воображаемого динамика. Поэтому, все расчеты в опыте берем с приличной погрешностью.

Как утверждает китаец, при нагрузке на фильтр динамика в 4 Ома, его полоса пропускания будет доходить до 150 Герц. Проверяем так ли это:

Его АЧХ

Как вы видите, частота среза на уровне в -3 дБ составила почти 150 Герц.

Нагружаем наш фильтр динамиком в 8 Ом

Частота среза составила 213 Гц.

В описании на товар утверждалось, что частота среза на 8-омный саб составит 300 Гц. Думаю, можно поверить китайцам, так как во-первых, все данные приближенные, а во-вторых, симуляция в программах далека от реальности. Но суть опыта была не в этом. Как мы видим на АЧХ, нагружая фильтр сопротивлением большего номинала, частота среза сдвигается в большую сторону. Это также надо учитывать при проектировании фильтров.

Кроссовер акустический — схемы для аудио колонок и сабвуфера своими руками

Самодельный акустический кроссовер применяемый в домашних колонках или сабвуферах изготовить собственными руками не представляет никакой сложности. Конечно, для этого нужно иметь хоть какие то навыки и прямые руки.

Зачем нужен кроссовер акустический в звуковой системе

Этот электронный прибор собранный по типу фильтров и играет важную роль в акустике. А предназначен он, чтобы разделять поступающий от источника сигнал на несколько рабочих частотных диапазонов используемыми динамиками. Кроссовер практически выполняет работу фильтра по отсеиванию ненужной частоты, тем самым фильтруя весь звуковой тракт.

Подключение кроссовера к колонке

В качестве простого примера здесь можно привести высокочастотные динамики, называемые пищалками. Так вот, если бы в аудио колонках не было установлено акустических кроссоверов, то пищалки просто бы захлебнулись всем спектром средних и особенно басовых частот хлынувшим на них. Ясное дело, что в таком случае говорить о каком то детализированном воспроизведении звука говорить не приходится. Динамические излучатели высокочастотного диапазона не могут воспроизводить другие частоты, кроме высоких.

Какие бывают типы кроссоверов

Аудио кроссоверы, это специальные электронные приборы в составе акустических систем, по типу они бывают активного и пассивного действия, двухполосные и трехполосные.

Положительные и отрицательные стороны пассивного фильтра частот

Установка и подключение конструкции частотного фильтра в колонках как правило выполняется в самой ближней точке от динамика.

Из этого следует, что при таком варианте, хватит только одного усилителя мощности, чтобы получить качественный звук. Такая схема использования пассивного фильтра говорит о его положительной стороне в работе акустики.

В продаже акустические фильтры бывают как в виде отдельных модулей так и встроенных в акустику, в основном расчитанные на две или три полосы пропускания. К недостаткам таких электронных устройств пассивного действия можно отнести их неспособность выдерживать длительную максимальную нагрузку. В случае долговременного использования пассивного кроссовера в режиме пиковой нагрузки, чревато входом его из строя.

Кроссовер акустический активного типа, его плюсы и минусы

Активный кроссовер в противовес пассивного имеет возможность корректного выбора и прецизионной настройки частоты среза. В частности, именно эта функция в устройстве считается наиболее ценной в плане создания качественного звука.

Изготовление печатной платы

Мы описали схему, которую нужно использовать, теперь изготовим важнейший элемент, а именно печатную плату.

Необходимо взять стеклотекстолит, ширина которого должна быть 2 см, а длина 4 см. Для начала обезжирьте поверхность и тщательно ее отшлифуйте. Затем распечатав представленную ниже схему, перенесите ее на кусочек стеклотекстолита, соблюдая габариты. Рекомендуется использовать метод ЛУТ.

Обратите внимание!

  • Лучшие комедии за всю историю кинематографа

  • Ухаживаем за красноухой черепахой

  • Монтаж сайдинга своими руками пошагово: этапы работ и подробная инструкция

Рисунок должен полностью отпечататься на поверхности заготовки, если не получилось сделать это с первого раза, можно дорисовать прерванные дорожки о руки.

Приготавливаем раствор, в котором будем травить стеклотекстолит. Вам необходимо взять 2 столовые ложки лимонной кислоты и 6 столовых ложек перекиси водорода и тщательно их перемешать. Для ускорения процесса перемешивания добавляем в щелочной раствор щепотку соли. Соль не участвует в процессе растворения.

Подождав немного убедитесь, что весь лишний медный слой растворился. Затем необходимо достать заготовку из емкости и промыть ее в проточной воде. При помощи ацетона удаляем чернила с платы.

Полосовые фильтры

В прошлой статье мы с вами рассматривали один из примеров полосового фильтра

Вот так выглядит АЧХ этого фильтра.

Особенность таких фильтров такова, что они имеют две частоты среза. Определяются они также на уровне в -3дБ или на уровне в 0,707 от максимального значения коэффициента передачи, а еще точнее Ku max/√2.

Полосовые резонансные фильтры

Если нам надо выделить какую-то узкую полосу частот, для этого применяются LC-резонанcные фильтры. Еще их часто называют избирательными. Давайте рассмотрим одного из их представителя.

LC-контур в сочетании с резистором R образует делитель напряжения. Катушка и конденсатор в паре создают параллельный колебательный контур, который на частоте резонанса будет иметь очень высокий импеданс, в народе – обрыв цепи. В результате, на выходе цепи при резонансе будет значение входного напряжения, при условии если мы к выходу такого фильтра не цепляем никакой нагрузки.

АЧХ данного фильтра будет выглядеть примерно вот так:

В реальной же цепи пик характеристики АЧХ будет сглажен за счет потерь в катушке и конденсаторе, так как катушка и конденсатор обладают паразитными параметрами.

Если взять по оси Y значение коэффициента передачи, то график АЧХ будет выглядеть следующим образом:

Постройте прямую на уровне в 0,707 и оцените полосу пропускания такого фильтра. Как вы можете заметить, она будет очень узкой. Коэффициент добротности Q позволяет оценить характеристику контура. Чем большее добротность, тем острее характеристика.

Как же определить добротность из графика? Для этого надо найти резонансную частоту по формуле:

где

f0— это резонансная частота контура, Гц

L — индуктивность катушки, Гн

С — емкость конденсатора, Ф

Подставляем L=1mH и С=1uF и получаем для нашего контура резонансную частоту в 5033 Гц.

Теперь надо определить полосу пропускания нашего фильтра. Делается это как обычно на уровне в -3 дБ, если вертикальная шкала в децибелах, либо на уровне в 0,707, если шкала линейная.

Давайте увеличим верхушку нашей АЧХ и найдем две частоты среза.

f1 = 4839 Гц

f2 = 5233 Гц

Следовательно, полоса пропускания Δf=f2 – f1 = 5233-4839=394 Гц

Ну и осталось найти добротность:

Q=5033/394=12,77

Режекторные фильтры

Другой разновидностью LC схем является последовательная LC-схема.

Ее АЧХ будет выглядеть примерно вот так:

Как можно увидеть, такая схема на резонансной частоте и вблизи нее как бы вырезает небольшой диапазон частот. Здесь вступает в силу резонанс последовательного колебательного контура. Как вы помните, на резонансной частоте сопротивление контура будет равняться его активному сопротивлению. Активное сопротивление контура составляют паразитные параметры катушки и конденсатора, поэтому падение напряжения на самом контуре будет равняться падению напряжения на паразитном сопротивлении, которое очень мало. Такой фильтр называют узкополосным режекторным фильтром.

На практике звенья таких фильтров каскадируют, чтобы получить различные фильтры с требуемой полосой пропускания. Но есть один минус у фильтров, в которых имеется катушка индуктивности. Катушки дорогие, громоздкие, имеют много паразитных параметров. Они чувствительны к фону, который магнитным путем наводится от расположенных поблизости силовых трансформаторов.

Конечно, этот недостаток можно устранить, поместив катушку индуктивности в экран из мю-металла, но от этого она станет только дороже. Проектировщики всячески пытаются избежать катушек индуктивности, если это возможно. Но, благодаря прогрессу, в настоящее время катушки не используются в активных фильтрах, построенных на ОУ.

Видео на тему “Как работает электрический фильтр”, рекомендую к просмотру:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector